

Al in modern imaging

Ana Jimenez-Pastor Quibim SL (Valencia, Spain)

Original image

+

Noise

Image with noise

Tumor

Healthy

AI models are very sensitive to small variabilities in the input image

Requirements to develop a robust AI model:

Requirements to develop a robust AI model:

1. Heterogeneity in the database:

- Male and female
- Different ages
- Different nationalities
- Multi-centric
- Different scanners
- Different acquisition protocols

• ...

Requirements to develop a robust AI model:

- 1. Heterogeneity in the database
- 2. Data augmentation techniques

Rotations

Noise

Zoom

Translations

. . .

Requirements to develop a robust AI model:

- 1. Heterogeneity in the database
- 2. Data augmentation techniques
- 3. External validation

Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers

Dong Wook Kim, MD¹*, Hye Young Jang, MD²*, Kyung Won Kim, MD, PhD², Youngbin Shin, MS², Seong Ho Park, MD, PhD²

¹Department of Radiology, Taean-gun Health Center and County Hospital, Taean-gun, Korea; ²Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Results: Of 516 eligible published studies, only 6% (31 studies) performed external validation. None of the 31 studies adopted all three design features: diagnostic cohort design, the inclusion of multiple institutions, and prospective data collection for external validation. No significant difference was found between medical and non-medical journals.

Training data

Feature-based models. Radiomics features

Feature-based models. Deep features

Feature-based models. Imaging biomarkers

Images source: ADC, Ktrans and PDFF (Quibim SL, Valencia, Spain). SUV (Dimitrakopoulou-Strauss, A. et al. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging (2021)

Feature-based models. Features harmonization

Harmonization techniques to reduce variabilities across manufacturers and sites.

ComBat* is a well-known technique previously used in genomics.

Fea

Example

• 118 Neuroblastoma patients

Patient overall survival prediction

• 156 radiomics features (MRI) + clinical information + molecular data

Model	Modifications	C. Index IPCW		C. Index		Mean AUC		Mean Brier Score	
		Train	Test	Train	Test	Train	Test	Train	Test
Сох	Boruta	0.745	0.709	0.785	0.728	0.829	0.875	0.108	0.117
ElasticNet Cox	Boruta	0.745	0.709	0.785	0.729	0.830	0.875	0.108	0.117
Random Survival Forest	PCA	0.913	0.721	0.928	0.743	0.962	0.895	0.085	0.123
Extra Survival Trees	РСА	0.869	0.718	0.893	0.747	0.928	0.827	0.093	0.127
Gradient Boosted Model	PCA + Remove Outliers	0.856	0.712	0.884	0.736	0.924	0.900	0.107	0.139
Linear SVM	MRMR	0.810	0.731	0.837	0.721	0.877	0.752	-	-
Gaussian SVM	MRMR	0.895	0.696	0.909	0.721	0.943	0.762	-	-

Example

• 118 Neuroblastoma patients

Patient overall survival prediction

• 156 radiomics features (MRI) + clinical information + molecular data

Conclusions

- Two main methodologies can be followed to train **AI models** on medical imaging.
- Features-based models are based on the extraction of **radiomics features, deep features or imaging biomarkers**.
- Imaging-based models are based on the use of **Convolutional Neural Networks (CNN)**.
- External validation is crucial to guarantee models generalization and reproducibility.
- Radiomics-based models allow the creation of **imaging biomarker panels**.

Al in modern imaging

Ana Jimenez-Pastor Quibim SL (Valencia, Spain)

